0=-16x^2+40

Simple and best practice solution for 0=-16x^2+40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16x^2+40 equation:



0=-16x^2+40
We move all terms to the left:
0-(-16x^2+40)=0
We add all the numbers together, and all the variables
-(-16x^2+40)=0
We get rid of parentheses
16x^2-40=0
a = 16; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·16·(-40)
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{10}}{2*16}=\frac{0-16\sqrt{10}}{32} =-\frac{16\sqrt{10}}{32} =-\frac{\sqrt{10}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{10}}{2*16}=\frac{0+16\sqrt{10}}{32} =\frac{16\sqrt{10}}{32} =\frac{\sqrt{10}}{2} $

See similar equations:

| -9y+7=71 | | 3s-10=14 | | 600x-600(x-10)=3x(x-10) | | 2(5-x)-5(x+3)=-26 | | (x+3)2=x2-3(1-x) | | 60n=14n-14 | | 550=60x+315 | | n/2=56/112 | | n+2n-5+2n-5=20 | | 1/4d=-6 | | 3n^2(n=1)^2 | | 36-7x=7x-35 | | 31/6q+1/3q-q=1 | | 0.075=x(0.05) | | 115x8=19 | | Z³-4+4i=0 | | 7(4n+5)=2(7n+3) | | 7.5=0.05x | | (X-3)^2-(2x+5)^2=-16 | | −y+1=3 | | y−1=3 | | -9y+17=71 | | F(x)=1/2x+1 | | -(x+6)+2=-3(x+5) | | 4(5m-3)=5(2m+2) | | m=2/5=1/2 | | 3(5x-4)=-13 | | 5(-4x+24)-x+6=0 | | 5x+15-4x=-16 | | 7-6x=4x+19 | | 2(2x-5)=20x | | 15x-5+12x-4=180 |

Equations solver categories